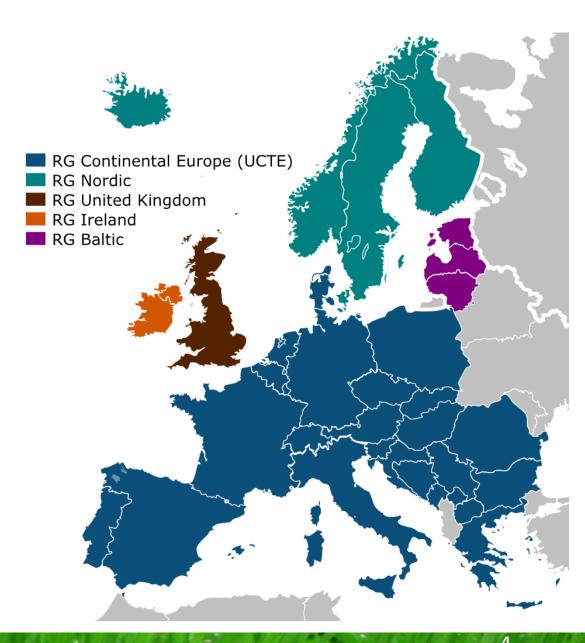


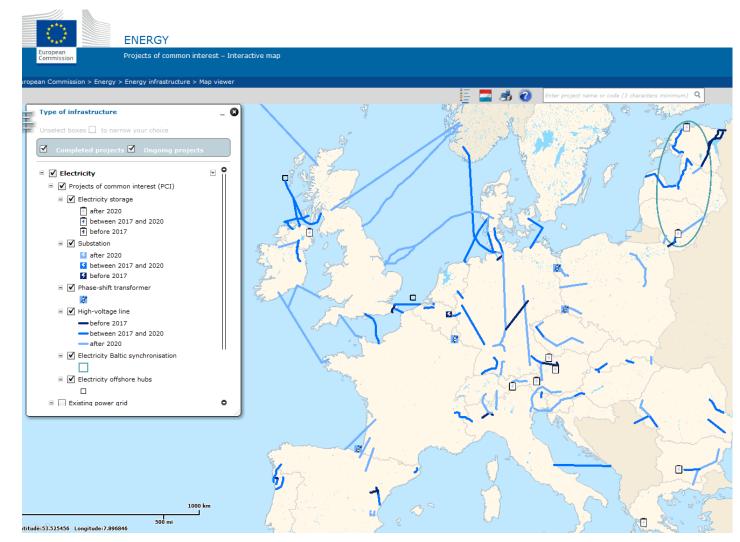
Status and concept of international grid connection Market and Technical Requirements

Ronnie Belmans Executive Director, GSGF


Agenda

- Overview of the European high voltage grid
- Section 2017 European market overview
- Planned expansions in Europe
- **Solution** Obstacles for expansion / super grids
- Namidea of European super grid: DESIGN GRID

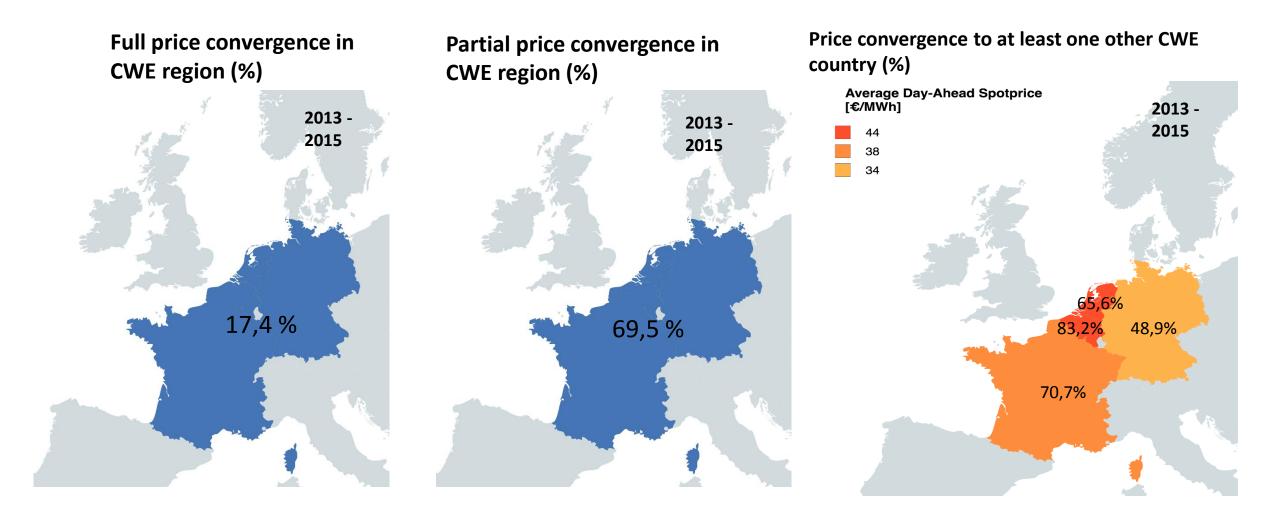
Synchronous zones in Europe


- Connected via HVDC cables or backto-back converters
- For smaller zones (UK, Ireland, Baltic region)
 - Frequency stability is of major concern
 - Especially with decreasing inertia due to renewables
 - HVDC, especially VSC offers great flexibility and control

What is the Trend in Europe?

Projects of Common Interest

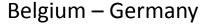
- Many PCIs between non synchronous zones
- Many PCIs in vicinity of pumped hydro storage
 - Norway and Alps
- Offshore hub between UK, NL, BE part of PCI list!
- The development around the North Sea is the first step of the super grid.



Average whole sale prices in Europe

- Purely merchant lines are only viable between zones with high price difference
 - ✤ E.g. links to UK, Italy or Spain
 - Links from Scandinavia to rest of Europe
- 🛰 In Central West Europe
 - Often price convergence on wholesale
 - Nevertheless, high balancing costs due to need for renewables
 - In 2015 roughly 1G€ for re-dispatch and other services for quality of supply in Germany
 - Grid expansion essential to increase social welfare and ensure security of supply!

Price convergence in CWE



7

What is the Trend in Europe? Embedded HVDC

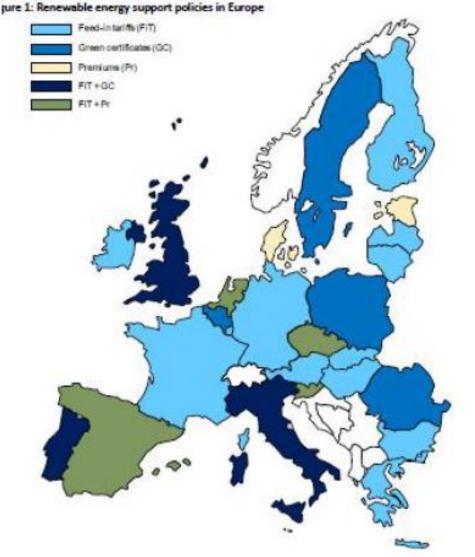
- More and more HVDC links within the same synchronous zone
 - Increased power flow control
 - Reactive power support
 - Increased stability

UK - Westlink

Sweden

France - Spain

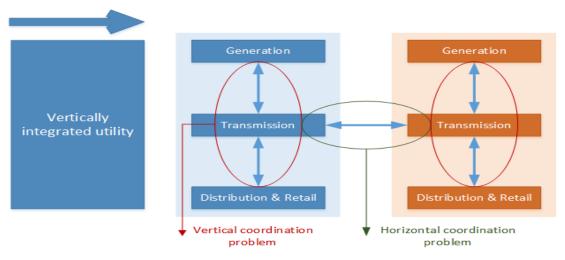
Challenges for coordinated planning


Not necessarily technical...

Regulatory challenges for coordinated planning

- Not aligned national frames
 - Swedish TSO is not responsible for connection of offshore wind farms
 - German TSO obligation makes cooperation difficult

Not aligned renewable support schemes


- Integrating three national solutions where each country imports the offshore wind produced in its water is not necessarily the best design
- In case of an interconnector, where does the wind go?
- Capacity Remuneration Mechanisms

Cost allocation and Regulation (1)

New developments

- h Restructuring => Vertical coordination (VC)
- * EU energy policy objectives => Horizontal coordination (HC)

- Efficient cost allocation solutions required both at national and European level
 - Transmission tariff design
 - Cross-border cost allocation

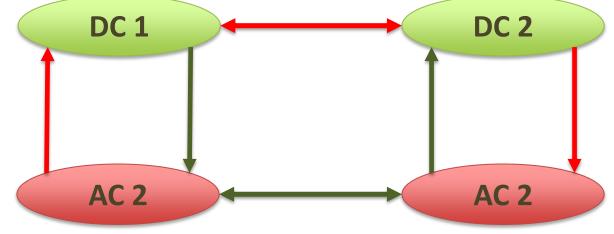
Cost allocation and Regulation (2)

- Existing cross-border cost allocation solution in Europe
 - Relative to asset hosted
 - Does not reflect the welfare distribution effect
 - ★ 50-50 rule
 - Does not reflect the welfare distribution effect
 - Limited application
 - Inter TSO Compensation (ICT)
 - Limited scope and precision
 - Welfare distribution effects ignored
 - ✤ Summarizing

Not suitable for PCI type projects

Other mechanisms based on Peak Demand – Installed Generation Capacity – RES Installed – TSO involvement – Distance – ...

Source: PLATTS, GISCO, European Commission

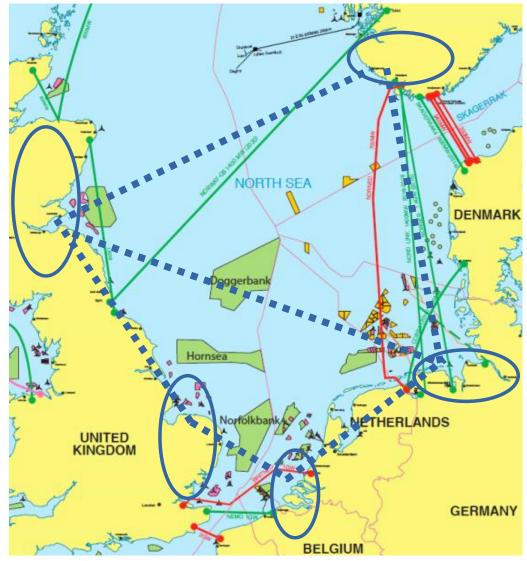


Source: PLATTS, GISCO, European Commission

Operational Rules for HVDC GRIDS

The control strategy influences the market

- * How to be neutral to all market participants?
- Ancillary services and operation
 - How to operate an overlay grid? Who is responsible?
 - Operational rules need to be considered in planning
 - But, many operational rules between AC and DC systems are not defined, yet (in red)



The way to the future – DESIGN GRID

An integrated offshore grid design for Europe

- A five line grid connecting:
 - Denmark
 - ✤ Belgium
 - Netherlands
 - Germany
 - Sweden
 - ✤ Iceland
 - ♦ UK
 - Norway

Allowing integration North Sea offshore wind farms

DESIGN GRID

DESIGN Grid will allow trade between different markets and price zones

- Denmark, Belgium, Netherlands, Germany, Sweden, Iceland, UK, Norway
- This way, TSOs will develop new products and services, based on the possibilities offered by **DESIGN GRID**
- The coordinated operation of the DESIGN GRID links will allow
 - Optimal infeed of renewable energy
 - Reducing re-dispatch costs
 - Delivery of system services
 - Frequency support
 - Reactive power support
 - Black start capability

How to get there?

Tst STEP: Feasibility study

- Identify technical and regulatory show stoppers and provide solutions
- Risk level: low
- Time horizon: 1-3 years
- **The Step:** Detailed engineering study
 - Subsea surveys, technical studies, legal advise, permits, etc....
 - Set up as a Newco -> DESIGN GRID
 - Acts as commissioning agent for construction
 - * Risk level: Medium
 - Time horizon: ~ 3 years

How to get there?

3rd **STEP: Stepwise Construction and Operation**

- Different companies can build parts of the grid
 - TSOs, insurance companies, pension funds, manufacturers, asset holders,
- The operation is transferred to a commercial system operator -> "DESIGN Operate" (Newco)
- Revenues are passed to DESIGN GRID determined in a specific regulatory scheme
- * Risk level: Medium
- * Time horizon: 2020 2030

Operation and Regulation

Operation and maintenance in the hands of DESIGN Operate

- Collecting grid fees
- Maintenance
- * Scheduling and real time operation (ISO approach, e.g. CORESO)
- Payment of concession holders
- Interaction with national grids is important
 - Although power transfer managed by DESIGN Operate, reactive power control can be given to national TSOs
- Fundamental rewrite of grid codes is required to coordinate interactions

Why are investments stalling?

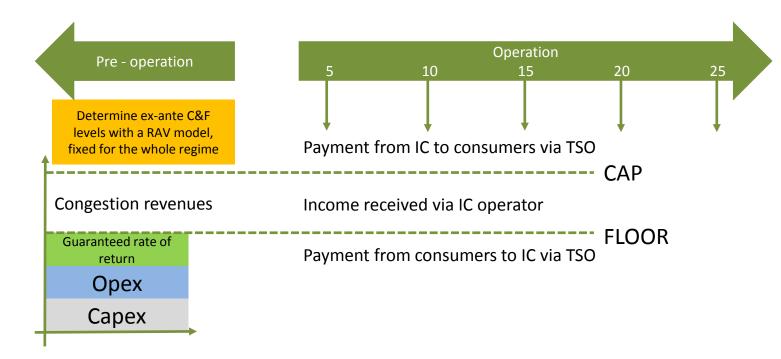
TSOs are hesitant to invest in a multinational offshore grid as long as there is not a harmonized regulation
THE OLD CHICKEN AND EGG PROBLEM ...

Regulators have no means to harmonize and improve regulation as long as there is no multinational offshore grid

Financing and Regulation

Regulatory Framework determines feasibility of North Sea Grid Developments:

- D: DKK, Danish Crown
- ✤ E: EUR, Euro
- * S: SEK, Swedish Crown
- ✤ I: ISK, Iceland Crown
- **G: GBP, British Pound**
- * <u>N: NOK, Norwegian Crown</u>


Now to match national operational standards, regulatory and legal framework?

Building Blocks of a Regulatory Framework

Planning and Design	 Coordination of national and regional transmission expansions
Ownership	 Ownership by New Third Party Companies (Newco) Impact monopoly of local TSO (parallel path)
Cost Allocation	 Distribution of the costs amongst regions: new cost allocation methods New tariff schemes (cfr. national regulators)
Operation	 Network Codes to ensure compatibility local TSO and Newco Redesign of Ancillary Services Coordination maintenance, scheduling and dispatch of transmission assets owned by Newco

DESIGN GRID Revenue Model

- Cap & floor set based on:
 - ✤ CAPEX
 - ✤ OPEX
 - Cost of financing

Sor the benefit of the **network users** and the **investors**:

- Sharing of revenues in times exceeding the cap
- Helps to being prepared for the time below the floor

Status quo and concept of international grid connection Market and Technical Requirements

Ronnie Belmans

Executive Director, GSGF

ronnie.belmans@energyville.be